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Abstract

The full electromagnetic linear dispersion equation for kinetic Alfvén fluctuations in a
homogeneous, isotropic, collisionless, Maxwellian electron-proton plasma is solved numer-
ically in the long wavelength limit. At propagation sufficiently oblique to the background
magnetic field B,, the solutions are summarized by an analytic expression for the damping
rate of such modes which scales as kik” where the subscripts denote directions relative
to B,. This damping progressively (although not monotonically) increases with increas-
ing electron and proton [, corresponding to four distinct damping regimes: nonresonant,

electron Landau, proton Landau, and proton transit-time damping.

1. Introduction

This manuscript addresses the damping of long-wavelength Alfvénic fluctuations
propagating obliquely to a background magnetic field B, in a homogeneous, isotropic,
collisionless plasma. We assume an electron-proton plasma in which the velocity distri-
butions are Maxwellian. We use numerical solutions of the linear dispersion equation for
arbitrary directions of propagation [Gary, 1993] to obtain an analytic expression for such
damping as a function of dimensionless plasma parameters and wavevector components.

Alfvén-cyclotron fluctuations are left-hand circularly polarized at propagation paral-
lel to the background magnetic field B,, satisfy the dispersion relation w, = kjva at long
wavelengths, and are relatively incompressible at most angles of propagation. Here the
subscripts || and L denote directions relative to B, and v, represents the Alfvén speed.
At k x B, = 0 the fluctuating fields of an Alfvén-cyclotron mode are perpendicular to B,
and in linear theory the cyclotron resonance provides the only important wave-particle
interaction. At sufficiently large values of kjc/w, (where ¢/w, represents the proton in-

ertial length), such fluctuations develop a strong ion cyclotron resonance, so that proton
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cyclotron damping becomes the dominant dissipation mechanism. The wavenumber at
onset of this damping is typically of order kjc/w, ~ 1; e.g. kjc/w, ~ 0.5 at 8, = 0.10
[Gary and Borovsky, 2004].

As the wavevector k becomes more oblique to B,, the properties of Alfvénic fluc-
tuations change; at sufficiently large values of 8 the fluctuations are often called "kinetic
Alfvén waves” [Hollweg, 1999, and references therein]. The nonzero k) admits nonzero
OF) and 6B via the Landau resonance at w, = kjv|. The parallel fluctuating electric
field implies Landau damping of the wave, and the compressible magnetic field gives rise
to transit time damping [Stiz, 1992].

Our concern here is the damping of kinetic Alfvén fluctuations at k; # 0 and
kjc/wp, << 1, where the primary dissipation mechanisms are via the Landau resonances.
Previous analyses of such damping using dispersion theory derived from the linear Vlasov
equation have been carried out by Stefant [1970], Lysak and Lotko [1996], and Leamon et
al. [1999]. Gary and Borovsky [2004] showed that, for sufficiently oblique propagation, for
sufficiently long wavelengths, and for a relatively broad range of plasma parameters, this
damping in an electron-proton plasma can be expressed in the form
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Here A is a parameter which is a function of g, and T, /T,; Q; stands for the jth species
cyclotron frequency, w; represents the jth species plasma frequency, the jth species thermal
speed is vj = \/kpT;/m;j, and 8; = 8wn;kpT;/BZ%. This report describes an evaluation of

the parameter A and provides an interpretation of that evaluation.

2. Linear theory

We carried out numerical evaluations of the full electromagnetic dispersion equation
for kinetic Alfvén fluctuations in the long wavelength limit. For an electron-proton plasma
with Maxwellian velocity distributions, the analytic expression for the dispersion equation
is given, for example, in Gary [1993]. Here m,/m. = 1836; sample calculations show the
results illustrated here are independent of v4/c as long as Q2 /w? = m,/m.(va/c)* << 1.
The Landau resonance factor for the jth species is defined as ¢; = w/v2|ky|v;.

In the long wavelength limit, we found ~/€, to approximately satisfy the
(k% ¢/wp)?kyjc/w, wavenumber dependence of Equation (1) for sufficiently large values of

6, the angle of propagation relative to B,. Here “sufficiently large” is a function of j,;
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Figure 1 shows how, at 3. = 10™*, Equation (1) is appropriate for 30° < 6 < 90°, whereas
on the range 0.001 < . < 1.0, Equation (1) is applicable only over 60° < 6 < 90°.

Kinetic Alfvén fluctuations at long wavelengths well satisfy the dispersion relation
wr = kjva

So the Landau resonance factors (. and ¢, are inverse functions of 3. and j3,, respectively,
as illustrated in Figure 2a. For a species j and a particular mode, if (; >> 1, the jth species
is non-Landau-resonant and that species should make no contribution to the damping rate.
As (; becomes less than about 3, the parallel phase speed w,/k| approaches the tail of
the reduced velocity distribution f;(v)) and there is the onset of damping due to the
Landau wave-particle resonance. As (; decreases further, the parallel phase speed moves
deeper into the thermal part of the reduced velocity distribution, so that, other things
being equal, the mode in question interacts with more particles and the damping increases
monotonically. Thus Figure 2a suggests that, as 3. increases, kinetic Alfvén waves should
experience the onset of electron Landau damping at §. << 1, and that the proton Landau
resonance should provide additional damping at 5, > 1 [Borovsky and Gary, 2008].

But other things are not always equal, and the suggestion of a relatively monotonic
increase in damping with . is not substantiated by detailed linear theory computations.
Anticipating the results of Figure 3, Figure 2b illustrates the Landau resonance factors as
functions of . for both kinetic Alfvén and ion acoustic fluctuations. This panels shows
a crossing of the resonance factors for the two modes at g, ~ 2.5; the interaction of the
two modes in complex frequency space suggests that additional physics arises near this
value.

Figure 3 shows the coefficient A as a function . for § = 60°. The figure shows four
distinet parameter regimes. If v, << v, << vy (e << 2m¢/my), wr/k” is much greater
than the thermal speed of either species, kinetic Alfvén fluctuations are non-(Landau)
resonant (i.e. |(,| >> |(.| >> 1), and damping is very weak; in this regime these fluctua-
tions are termed “inertial Alfvén waves” [Lysak and Lotko, 1996]. As 3. increases, w,/k
approaches the electron thermal speed, |(.| approaches unity (as indicated by Figure 2a),
and electron Landau damping becomes significant. The parameter regime in which this
mechanism dominates damping is v, < v4 < ve, that is 2m./m, < 8. << 2T./T,. In this
regime, the A factor is approximately constant, as noted by Gary and Borovsky [2004],
although at g. = 0.10 we obtain A = 0.54, which is larger than the 0.35 factor computed
by Gary and Borovsky [2004] for a nonvanishing value of k.
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As the species § further increase, electron Landau damping persists, but the contin-
uing decrease in |(,| for kinetic Alfvén fluctuations implies the onset of additional damping
due to the proton Landau resonance. This increase was predicted by Stefant [1970], who
constructed an approximate solution to the linear dispersion equation for kinetic Alfvén
fluctuations which included the effects of 0| and Landau damping, but assumed 0B =
0 and therefore ignored transit-time damping. Stefant [1970] predicted a maximum in the
magnitude of the damping rate as a function of ., interpreting this as resulting from a
matching between the phase speeds of the Alfvén and ion acoustic fluctuations.

Our numerical solutions for the damping rate of kinetic Alfvén fluctuations in the
long-wavelength limit, illustrated in Figure 3, also exhibit a maximum as a function of g,.
This maximum is a function of T /T),, also illustrated in Figure 3. At T, /T, = 10, §, =
0.25 and 6 = 60°, the parallel phase speeds of the kinetic Alfvén and ion acoustic modes in
the long wavelength limit are the same; that is, (, = 2.0. The Stefant [1970] interpretation
implies that this should be correspond to the maximum value of the A factor, in qualitative
agreement with the results of Figure 3.

Further support for the phase-speed-matching interpretation is given by the character
of the peak in the A-vs-j3, curve. This relative maximum is distinct at T, /7, = 10 where ion
acoustic wave damping is weak, becomes less distinct as ion acoustic damping increases at
T./T, =1 [Stefant, 1970], and disappears completely at T, /T, = 0.10 where proton Landau
damping is so strong that ion acoustic modes cannot propagate. Figure 4, which plots
the kinetic Alfvén fluctuation damping rate and the associated value of |6E)|*/|SE|* as
functions of ., shows that the relative maximum for damping of this mode coincides with a
relative maximum of this fluctuating electric field ratio. In other words, when the w, /k| of
the kinetic Alfvén and ion acoustic modes match, the relatively strong fluctuating parallel
electric field of the latter mode couples to the same field component of the former mode,
enhancing the |6 )| and thereby enhancing the damping of the kinetic Alfvén fluctuations.

If vy < v, (ie., B, > 2), Alfvén fluctuation damping increases monotonically with
B. This is very different from the damping rate in the electron Landau damping regime,
where A is relatively independent of changes in .. To examine a possible reason for this
difference, we return to Gary and Borovsky [2004] and evalute the efficacy ratios R; which
provide a measure of the relative effectiveness of transit-time damping (which depends on

0B)) versus Landau damping (which is a function of éE)). From Equation (7) of Gary



Table 1: Kinetic Alfvén fluctuation damping regimes

Primary damping

fe << 2me/m, v, << Uy Nonresonant
2me/my < Be << 2T /T, vp << vA < Ve Electron Landau
By <2 vp < VA Proton Landau

2 < By va < vy Proton transit-time

and Borovsky [2004],
2
for an electron-proton plasma, so that if T, = T),, we need consider only R..

Figure 5a shows the electron efficacy ratio as a function of 8 for kinetic Alfvén
fluctuations in the long wavelength limit for T, /T, = 1. For 8. < 1, R, is much less than
1 indicating that Landau damping dominates transit-time damping for both electrons and
protons at all angles of propagation. As . becomes greater than unity, R. at quasi-
perpendicular propagation grows, so that, at sufficiently large ., transit-time damping
dominates Landau damping for both species. This is illustrated in Figure 5b which shows
that R, at § = 60° increases monotonically as a function of j3..

Figure 6 shows the electron and proton efficacy ratios as functions of 6 for kinetic
Alfvén fluctuations in the long wavelength limit for three different values of T, /T), at 3, =
1. As Equation (2) suggests, an increase in T, /T, implies an increasing efficacy of electron
transit-time damping, at both quasi-parallel and quasi-perpendicular propagation, whereas

a decreasing T, /T, leads to an increased role of proton transit-time damping.

3. Summary

We have numerically solved the full linear dispersion equation for kinetic Alfvén fluc-
tuations in a homogeneous, isotropic, collisionless plasma. At sufficiently long wavelengths,
and at sufficiently large angles of propagation relative to B,, the damping of such modes
can be expressed as Equation (1) with coeflicient A that depends only on g, and T, /T,.
Our numerical solutions show that A and the associated damping generally increase as 3,

increases through the four regimes summarized in Table 1.
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Equation (1) can be used in fluid models of long-wavelength kinetic Alfvén fluctu-
ations to accurately include the dissipation due to the Landau resonances of such fluctu-
ations. In particular, we suggest that this equation provides a simple method for includ-
ing the consequences of kinetic Alfvén fluctuation dissipation in MHD turbulence models
[Borovsky and Gary, 2008]. The damping of magnetosonic fluctuations is different from
Equation (1) and must be derived separately.
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Figure Captions

Figure 1. The coefficient A of Equation (1) as a function of propagation angle ¢

for five different values of J.. For all figures presented here, this coefficient is derived from
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numerical solutions of the full linear dispersion equation for kinetic Alfvén fluctuations in
the limit of ke¢/w, approaching zero using m,/m, = 1836 and v4/c = 1.0 x10™*. Here the
dotted line corresponds to 3. = 1.0, the long-dash-short-dash line to g, = 0.10, the solid
line to . = 0.01, the uniformly dashed line to g, = 0.001, and the line of squares to g, =
0.0001. Here T, /T, = 1.0.

Figure 2. The Landau resonance factors for fluctuations in the long-wavelength
limit at § = 60° for electrons ((.) and protons ((,) as functions of F.. (a) Resonance
factors for kinetic Alfvén waves; here T, /T, = 1 and 10 as labeled. (b) At T, /T, = 10,
resonance factors for kinetic Alfvén waves (¢, is the solid line and (. is the line of solid

dots) and for ion acoustic waves ((, is the dashed line and (. is the line of open circles).

Figure 3. The coefficient A of Equation (1) for kinetic Alfvén fluctuations in the
long-wavelength limit as a function of g, at 8 = 60° for three values of T, /T, as labeled.

Figure 4. The damping rate and associated value of |0E}|*/[6E[* of kinetic Alfvén
fluctuations at kc¢/w, = 0.01, # = 60° and T, /T, = 10 as functions of j,.

Figure 5. The electron efficacy ratio R, for kinetic Alfvén fluctuations in the long

wavelength limit. (a) R, as a function of the propagation angle 6 for four different values

of . as labeled. (b) R, at § = 60° as a function of 3.. Here T, /T, = 1.0.

Figure 6. The species efficacy ratios R; for kinetic Alfvén fluctuations in the long
wavelength limit as functions of the propagation angle §. Here 3, = 1.0, and the three
different values of T, /T, are as labeled. Here R, is represented by the dashed line for
T./T, = 2.0, by the solid line for T, /T, = 1.0, and by the long-dash-short-dashed line for
T./T, = 0.5. Here R, is represented by the line of diamonds for T, /T, = 2.0, by the line
of squares for T, /T, = 1.0, and by the line of dots for T, /T, = 0.5.
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